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Abstract

Human-computer intelligent interaction (HCII) is an
emerging field of science aimed at providing natural ways
for humans to use computers as aids. It is argued that for
the computer to be able to interact with humans, it needs
to have the communication skills of humans. One of these
skills is the ability to understand the emotional state of the
person. The most expressive way humans display emotions
is through facial expressions. In this work we report on sev-
eral advances we have made in building a system for clas-
sification of facial expressions from continuous video input.
We introduce and test different architectures, focusing on
changes in distribution assumptions and feature dependency
structures. We also introduce a facial expression recogni-
tion from live video input using temporal cues. Methods for
using temporal information have been extensively explored
for speech recognition applications. Among these methods
are template matching using dynamic programming meth-
ods and hidden Markov models (HMM). This work exploits
existing methods and proposes a new architecture of HMMs
for automatically segmenting and recognizing human facial
expression from video sequences. The architecture performs
both segmentation and recognition of the facial expressions
automatically using an multi-level architecture composed
of an HMM layer and a Markov model layer. We explore
both person-dependent and person-independent recognition
of expressions and compare the different methods.

1 Introduction

In recent years there has been a growing interest in im-
proving all aspects of the interaction between humans and
computers. This emerging field has been a research inter-
est for scientists from several different scholastic tracks,

i.e., computer science, engineering, psychology, and neu-
roscience. These studies focus not only on improving com-
puter interfaces, but also on improving the actions the com-
puter takes based on feedback from the user. Feedback
from the user has traditionally been given through the key-
board and mouse. Other devices have also been developed
for more application specific interfaces, such as joysticks,
trackballs, datagloves, and touch screens. The rapid ad-
vance of technology in recent years has made computers
cheaper and more powerful, and has made the use of mi-
crophones and PC-cameras affordable and easily available.
The microphones and cameras enable the computer to “see”
and “hear,” and to use this information to act. A good ex-
ample of this is the “Smart-Kiosk” [15]. It is argued that to
truly achieve effective human-computer intelligent interac-
tion (HCII), there is a need for the computer to be able to
interact naturally with the user, similar to the way human-
human interaction takes place. Humans interact with each
other mainly through speech, but also through body ges-
tures, to emphasize a certain part of the speech, and display
of emotions. Emotions are displayed by visual, vocal, and
other physiological means. There is a growing amount of
evidence showing that emotional skills are part of what is
called “intelligence” [38, 17].

In this work we present several advances we have made
towards a facial expression recognition system. We first de-
scribe the real time face tracking system used and the fea-
tures extracted from the face tracking to be used for facial
expression recognition. We then describe several different
classifiers developed for recognizing the facial expressions.
The first class of classifiers use the features extracted for
each frame in the video sequence to produce a classifica-
tion result for that frame. The second type of classifier is a
multi-level HMM classifier, combining the temporal infor-
mation to both automatically segment the video sequence to
the different expressions and perform the classification of
each segment to the corresponding facial expression.
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2 Literature Review

There is little agreement about a definition of emotion.
Many theories of emotion have been proposed. Some of
these could not be verified until recently when measurement
of some physiological signals become available. In general,
emotions are short-term, whereas moods are long-term, and
temperaments or personalities are very long-term [22]. A
particular mood may sustain for several days, and a temper-
ament for months or years. Finally, emotional disorders can
be so disabling that people affected are no longer able to
lead normal lives.

Darwin [7] held an ethological view of emotional ex-
pressions, arguing that the expressions from infancy and
lower life forms exist in adult humans. Following the Ori-
gin of Species he wrote The Expression of the Emotions in
Man and Animals. According to him, emotional expressions
are closely related to survival. Thus in human interactions,
these nonverbal expression are as important as the verbal
interaction. James [21] viewed emotions not as causes but
as effects. Situations arise around us which cause changes
in physiological signals. According to James, “the bodily
changes follow directly the perception of the exciting fact,
and that our feeling of the same changes as they occur is the
emotion.” Carl Lange proposed a similar theory indepen-
dently at around the same time. This is often referred to as
the “James-Lange” theory of emotion. Cannon [3], contrary
to James, believed that emotions are first felt, then exhibited
outwardly causing certain behaviors.

2.1 Judgment Studies

Despite these diverse theories, it is evident that people
display expressions to various degrees. One frequently stud-
ied task is the judgment of emotions—how well can human
observers tell the emotional expressions of others, in the
voice, on the face, etc? Related questions are: Do these
represent their true emotions? Can they be convincingly
portrayed? How well can people conceal their emotions?
In such tasks, researchers often use two different methods
to describe the emotions.

One approach is to label the emotions in discrete cate-
gories, i.e., human judges must choose from a prescribed
list of word labels, such as joy, fear, love, surprise, sadness,
etc. One problem with this approach is that the stimuli may
contain blended emotions. Also the choice of words may be
too restrictive, or culturally dependent.

Another way is to have multiple dimensions or scales
to describe emotions. Instead of choosing discrete la-
bels, observers can indicate their impression of each stim-
ulus on several continuous scales, for example, pleasant–
unpleasant, attention–rejection, simple–complicated, etc.
Two common scales are valence and arousal. Valence de-
scribes the pleasantness of the stimuli, with positive (or

pleasant) on one end, and negative (or unpleasant) on the
other. For example, happiness has a positive valence, while
disgust has a negative valence. The other dimension is
arousal or activation. For example, sadness has low arousal,
whereas surprise has high arousal level. The different emo-
tional labels could be plotted at various positions on a two-
dimensional plane spanned by these two axes to construct a
2D emotion model [24]. Scholsberg [39] suggested a three-
dimensional model in which he had attention–rejection in
addition to the above two.

Another interesting topic is how the researchers man-
aged to obtain data for observation. Some people used
posers, including professional actors and nonactors. Oth-
ers attempted to induce emotional reactions by some clever
means. For example, Ekman showed stress-inducing film
of nasal surgery in order to get the disgusted look on the
viewers’ faces. Some experimenter even dumped water on
the subjects or fired blank shots to induce surprise, while
others used clumsy technicians who made rude remarks to
arouse fear and anger [19]. Obviously, some of these are not
practical ways of acquiring data. After studying acted and
natural expressions, Ekman concluded that expressions can
be convincingly portrayed [10].

2.2 Facial Expression Recognition Studies

Since the early 1970s, Paul Ekman and his colleagues
have performed extensive studies of human facial expres-
sions [11]. They found evidence to support universality in
facial expressions. These “universal facial expressions” are
those representing happiness, sadness, anger, fear, surprise,
and disgust. They studied facial expressions in different cul-
tures, including preliterate cultures, and found much com-
monality in the expression and recognition of emotions on
the face. However, they observed differences in expressions
as well, and proposed that facial expressions are governed
by “display rules” in different social contexts. For exam-
ple, Japanese subjects and American subjects showed simi-
lar facial expressions while viewing the same stimulus film.
However, in the presence of authorities, the Japanese view-
ers were more reluctant to show their real expressions. Mat-
sumoto [29] reported the discovery of a seventh universal
facial expression: contempt. Babies seem to exhibit a wide
range of facial expressions without being taught, thus sug-
gesting that these expressions are innate [20].

Ekman and Friesen [12] developed the Facial Action
Coding System (FACS) to code facial expressions where
movements on the face are described by a set of action units
(AUs). Each AU has some related muscular basis. This sys-
tem of coding facial expressions is done manually by fol-
lowing a set of prescribed rules. The inputs are still images
of facial expressions, often at the peak of the expression.
This process is very time-consuming.

Ekman’s work inspired many researchers to analyze fa-
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cial expressions by means of image and video processing.
By tracking facial features and measuring the amount of fa-
cial movement, they attempt to categorize different facial
expressions. Recent work on facial expression analysis and
recognition [28, 42, 25, 1, 34, 13, 31, 37, 9, 27] has used
these “basic expressions” or a subset of them.

The work in computer-assisted quantification of facial
expressions did not start until the 1990s. Mase [28] used
optical flow (OF) to recognize facial expressions. He was
one of the first to use image processing techniques to rec-
ognize facial expressions. Lanitis et al. [25] used a flexi-
ble shape and appearance model for image coding, person
identification, pose recovery, gender recognition, and facial
expression recognition. Black and Yacoob [1] used local
parameterized models of image motion to recover non-rigid
motion. Once recovered, these parameters are used as inputs
to a rule-based classifier to recognize the six basic facial ex-
pressions. Yacoob and Davis [43] computed optical flow
and used similar rules to classify the six facial expressions.
Rosenblum, Yacoob, and Davis [34] also computed optical
flow of regions on the face, then applied a radial basis func-
tion network to classify expressions. Essa and Pentland [13]
also used an optical flow region-based method to recognize
expressions. Donato et al. [9] tested different features for
recognizing facial AUs and inferring the facial expression
in the frame. Otsuka and Ohya [31] first computed optical
flow, then computed their 2D Fourier transform coefficients,
which were used as feature vectors for a hidden Markov
model (HMM) to classify expressions. The trained system
was able to recognize one of the six expressions near real-
time (about 10 Hz). Furthermore, they used the tracked mo-
tions to control the facial expression of an animated Kabuki
system [32]. A similar approach, using different features,
was used by Lien [27].

These methods are similar in the general sense that they
first extract some features from the images, then these fea-
tures are used as inputs into a classification system, and the
outcome is one of the preselected emotion categories. They
differ mainly in the features extracted from the video images
and in the processing of video images to classify emotions.
The video processing falls into two broad categories. The
first is “feature-based,” where one tries to detect and track
specific features such as the corners of the mouth, eyebrows,
etc. The other approach is “region-based” in which facial
motions are measured in certain regions on the face such
as the eye/eyebrow and mouth regions. People have used
different classification algorithms to categorize these emo-
tions.

Ueki et al. [42] extracted AUs and used neural networks
(NN) to analyze the emotions. Seventeen AUs were mapped
to two dimensions using an identity mapping network, and
this showed resemblance of the 2D psychological emotion
models. Later on, Morishima [30] proposed a 3D emotion
model in order to deal with transitions between emotions,

and claimed correlation to the 3D psychological emotion
model [39].

Another interesting thing to point out is commonly con-
fused categories in these six basic expressions. As reported
by Ekman, anger and disgust are commonly confused in
judgment studies. Also, fear and surprise are commonly
confused. The reason why these confusions occur is be-
cause they share many similar facial actions [12]. Surprise
is sometimes mistaken for interest, but not the other way
around. In the computer recognition studies, some of these
confusions are observed [1, 43].

3 Face Tracking and Feature Extraction

The face tracking we use in our system is based on a sys-
tem developed by Tao and Huang [41] called the Piecewise
Bézier Volume Deformation (PBVD) tracker.

This face tracker uses a model-based approach where an
explicit 3D wireframe model of the face is constructed. In
the first frame of the image sequence, landmark facial fea-
tures such as the eye corners and mouth corners are selected
interactively. The generic face model is then warped to fit
the selected facial features. The face model consists of 16
surface patches embedded in Bézier volumes. The surface
patches defined this way are guaranteed to be continuous
and smooth. The shape of the mesh can be changed by
changing the locations of the control points in the Bézier
volume. Before describing the Bézier volume, we begin
with the Bézier curve.

The Bézier curve is a parametric curve defined as
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where the shape of the curve is controlled by a set of control
points �

�
. As the control points are moved, a new shape is

obtained according to the Bernstein polynomials
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� �!��� in

Equation (1). The displacement of a point on the curve can
be described in terms of linear combinations of displace-
ments of the control points.

The Bézier surface is a straight-forward 3D extension of
the Bézier curve where the equation becomes

"��!�$#&%'#&()��� 	
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This can also be written in matrix notation as5 �7698 (3)

where
5

is the displacement of the mesh nodes, 8 is the
matrix whose columns are the control point displacement
vectors of the Bézier volume, and 6 is the mapping in terms
of Bernstein polynomials. In other words, the change in the
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shape of the face model can be described in terms of the
deformations in 8 .

Once the model is constructed and fitted, head motion
and local deformations of the facial features such as the eye-
brows, eyelids, and mouth can be tracked. First the 2D im-
age motions are measured using template matching between
frames at different resolutions. Image templates from the
previous frame and from the very first frame are both used
for more robust tracking. The measured 2D image motions
are modeled as projections of the true 3D motions onto the
image plane. From the 2D motions of many points on the
mesh, the 3D motion can be estimated by solving an overde-
termined system of equations of the projective motions in
the least squared sense. Figure 1(a) shows an example of
the face tracker interface for one frame.

The recovered motions are represented in terms of mag-
nitudes of some predefined motion of various facial features.
Each feature motion corresponds to a simple deformation on
the face, defined in terms of the Bézier volume control pa-
rameters. With some abuse of notation, we refer to these
motions vectors as Action-Units (AU’s), but note that they
are not equivalent to Ekman’s AU’s, and are numeric in na-
ture, representing not only the activation of a facial region,
but also the direction and intensity of the motion. Table 1
lists the AU’s used in the face tracker which are also shown
in Figure 1(b). Each facial expression is modeled as a linear
combination of the AUs

5 �76�� 8 
 8���3 3 3 8 .�� �����
	 
	 �
...	 .

����

 �7698�� (4)

where each of the 8 �
corresponds to an AU, and the 	 � are

the corresponding magnitudes (or coefficients) of each de-
formation. The overall motion of the head and face is� � 5 
�� 698��1� ��� (5)

where
�

is the 3D rotation matrix, � is the 3D translation
matrix, and

5 
 is the initial face model.

4 SNow-Naive-Bayes and SNoW Classifiers
Using Discrete Features

In this section we describe the use of SNoW (Sparse Net-
work of Winnows) and SNow-Naive-Bayes (NB) classifiers
for our problem, using discretized versions of the features
discussed in the previous section.

The advantage of discretizing the features is that no as-
sumptions on the distribution of the features has to be made
(see next section) and the true distribution is approximated
well. The disadvantage is that the complexity of the clas-
sifier increases exponentially with the number of values the
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Figure 1. (a) The wireframe model, (b) the facial motion
measurements

features take, requiring larger training sets for reliable esti-
mation.

The SNoW classifier was developed by Roth and has
been successfully applied to natural language processing for
context-sensitive spelling correction [35], and more recently
for face detection in images [36]. Here we use it for image
sequence analysis. First the original features (i.e., the Ac-
tion Unit measurements) are transformed into a higher di-
mensional feature space of features, after which the connec-
tions from (transformed) feature nodes to each of the output
target nodes will be sparse. The idea is to transform from
the original feature space where the classes are not linearly
separable to a higher dimensional space where the classes
become more linearly separable.

Figure 2 shows the SNoW classifier. In the input layer,
raw measurements ��� � # 3 3 3 # � 	�� are transformed to a larger
space of binary features ��� � # 3 3 3 # � . � , where ��� �

. A
number of transformations can be used. In this work, we
discretize the raw input into bins, activating a certain feature
if input falls into the associated bin. We used both uniform-
sized bins and nonuniform-sized bins. We also threshold
the raw inputs and combinations of raw inputs for addi-
tional features. This classifier is data-driven, i.e., features
are only allocated and activated when input data contribute
to them. In the output layer, each class has a target node � �
to � + , where the output of each node equals the weighted
sum of the features  ( � � � . During training, all input data
are labelled with the correct output class. Each connection
from the feature layer �!� � � to the output layer has an initial
weight, which is updated in training (promoted or demoted)
according to the type of error made for each training sample.

Each output node has two updating parameters: promo-
tion parameter " and demotion parameter # . If the correct
output target node fails to win the competition using the cur-
rent features, weights from the feature layer to this output
node are promoted using a multiplicative rule $&%'")(*$ .
On the other hand, if the output is turned on where it should
be off, all its weights are demoted according to the demo-
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Figure 2. The SNoW architecture.

tion parameter $ % # ( $ . This multiplicative update is
very fast. For testing, a competition is carried out in the out-
put layer in the winner-takes-all fashion. Another advantage
is that, unlike in fully connected networks such as multi-
layered perceptrons, SNoW does not require many training
examples to train the network. Other advantages include
the sparseness of the connections established in a data-drive
fashion and the incorporation of prior knowledge. A vari-
ant of SNoW, which will be referred to as SNoW-NB, is
also used where output targets are replaced with naive Bayes
nodes.

The video features (AUs) described in the previous sec-
tion are the “raw inputs” here for SNoW, so we need to ap-
ply some feature extraction (transformation) to produce the
binary features.

The raw features � � ��# 3 3 34# � 	 � are discretized into
bins, where each bin corresponds to one binary input in��� � # 3 3 3 # � . � for SNoW. The discretization can be of uni-
form or nonuniform sized bins, depending on the distribu-
tion of the feature values. The number of the bins also de-
pends on the application.

In addition to discretization, thresholding can also be
used to produce additional inputs. For example, binary fea-
ture � * can be activated if a certain raw input is below some
threshold value. Here we tried different thresholds in an
overlapping fashion.

SNoW-NB (with naive Bayes output nodes) classifier is
a probabilistic classifier in which the features are assumed
independent given the class. The SNoW-NB can be under-
stood as a Naive-Bayes Bayesian network, where all the fea-
tures are discrete. NB classifiers have a very good record
in many classification problems, although the independence
assumption is usually violated in practice. The reason for
the NB success as a classifier is attributed to the small num-
ber of parameters needed to be estimated. Recently, Garg
and Roth [16] showed using information theoretic argu-
ments additional reasons for the success of NB classifiers.

5 Continuous Naive-Bayes and Changing the
Distribution: Cauchy Naive Bayes Classi-
fier

Consider a binary classification problem with ��� ��� # � �(class label) and � ��� 	 (feature vector) the observed data.
The classification problem under the maximum likelihood
framework (ML) can be formulated as:	� ��
 ��� � 
�
�� � ��� ��� (6)

If the features in � are assumed to be independent of
each other conditioned upon the class label (the Naive Bayes
framework), Equation (6) reduces to:	� ��
 ��� � 
�
 ��� � � � ��
 � � � � (7)

Now the problem is how to model the probability of fea-
tures given the class label � ��
 � � � � . In practice, the common
assumption is that we have a Gaussian distribution and the
ML can be used to obtain the estimate of the parameters
(mean and variance). However, Sebe, et al. [40] have shown
that the Gaussian assumption is often invalid and proposed
the Cauchy distribution as an alternative model. Intuitively,
this distribution can be thought of as being able to model
the heavy tails observed in the empirical distribution. This
model is referred to as Cauchy Naive Bayes.

The difficulty of this model is in estimating the parame-
ters of the Cauchy distribution. For a sample of size

�
sam-

pled from the Cauchy distribution the likelihood is given by:� � ��� 
'#�� ��� 	�� � � � �� ��� � � �!
 � �"
��#���%$ (8)

where 
 is the location parameter and � is the scale param-
eter. Note that similar with the Gaussian case we have to
estimate only two parameters.

Let
	
 and

	� be the maximum likelihood estimators for 

and � . The maximum likelihood equations are

	
 � � � 
 � � 	
	�&� � �!
 � � 	
��#� � � (9)

	
 � � �
	� �	�&� � �!
 � � 	
��#� � � '

(10)

The Equations (9) and (10) are high order polynomials
and therefore a numerical procedure must be used in order
to solve them for

	
 and
	� . For solving these equations we

used a Newton-Raphson iterative method with the starting
points given by the mean and the variance of the data. We
were always able to find unique positive solutions for

	
 and	� which is in accordance with the conjecture stated by Hass,
et al. [18]. In certain cases, however, the Newton-Raphson
iteration diverged, in which cases we selected new starting
points.
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5.1 Choosing the Distribution

We consider that representative ground truth is provided.
We split the ground truth in two nonoverlapping sets: the
training set and the test set. The estimation of the parame-
ters is done using only the training set. The classification is
performed using only the test set.

An interesting problem is determining when to use the
Cauchy assumption versus the Gaussian assumption. One
solution is to compute the distribution for the data and to
match this distribution using a Chi-square or a Kolmogorov-
Smirnov test with the model distributions (Cauchy or Gaus-
sian) estimated using the ML approach described above.
Another solution (considered here) is to extract a random
subsample from the training set and to perform an initial
classification. The model distribution which provides better
results would be used further in the classification of the test
set. The assumption behind this solution is that the training
set and the test set have similar characteristics.

In summary, our algorithm can be described as follows:

Step 1. For each class consider the corresponding training
set and estimate the parameters of the model (Gaussian
and Cauchy) using the ML framework.

Step 2. Extract a random sample from the training set and
perform classification. The model which provides the
best results will be assigned for each individual class
in the classification step.

Step 3. Perform classification using only the test set.

6 Beyond the NB Assumption: Finding De-
pendencies among Features Using a Hybrid
TAN and Gaussian Classifier

As mentioned before, the NB classifier was successful
in many applications. However, the strong independence
assumptions seem to be very unreasonable in our case. It
could be beneficial to search for a better structure that cap-
tures better the dependencies among the features. Of course,
to attempt to find all the dependencies is an NP-complete
problem. So, we restrict ourselves to a smaller class of
structures called the Tree-Augmented-Naive Bayes (TAN)
classifiers. TAN classifiers have been introduced by Fried-
man et al. [14] and are represented as Bayesian networks.
Bayesian networks are acyclic graphical models, with the
class and features as the nodes, and dependencies are repre-
sented by the directed edges in the graph between the nodes.
The joint probability distribution is factored to a collection
of conditional probability distributions of each node in the
graph.

In the TAN classifier structure the class node has no par-
ents and each feature has the class node as a parent and at
most one other feature, such that the result is a tree structure
for the features. An example of a TAN classifier is given

in Figure 3. Friedman et al. [14] proposed using the TAN
model as a classifier, to enhance the performance over the
simple Naive-Bayes classifier. TAN models are more com-
plicated then the Naive-Bayes, but are not fully connected
graphs. The existence of an efficient algorithm to compute
the best TAN model makes it a good candidate in the search
for a better structure over the simple NB. Learning the TAN

C

F1 F2 F3 F4

Figure 3. An example of a TAN classifier.

classifier is more complicated. In this case, we do not fix the
structure of the Bayesian network, but try to find the TAN
structure that maximizes the likelihood function given the
training data out of all possible TAN structures.

In general, searching for the best structure has no effi-
cient solution, however, searching for the best TAN struc-
ture does have one. The method is using the modified Chow-
Liu algorithm [5] for constructing tree augmented Bayesian
networks [14]. This is done as follows:

1. Compute the class conditional pair-wise mutual infor-
mation between each pair of features, ��� � � � # � * � � � ������ - �
	 - � � ��
 � # 
 * #
� ����� � ����� �

-
� 	�� �������� � � ��� ����� 	 � ��� #

�
���� .

2. Build a complete undirected graph in which each
vertex is a variable, and the weight of each edge is the
mutual information computed in 1.

3. Build a maximum weighted spanning tree (MWST).

4. Transform the undirected MWST of 3 to a directed
graph by choosing a root node and pointing the arrows
of all edges away from the root.

5. Make the class node the parent of all the feature nodes
in the directed graph of step 4.

This procedure ensures to find the TAN model that max-
imizes the likelihood of the data we have. The algorithm is
computed in polynomial time ( � � � � ��� �! � , with  being
the number of instances and

�
the number of features).
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The learning algorithm for the TAN classifier is only fea-
sible in cases where all the features are discrete. In our prob-
lem the features are continuous. The number of parameters
of the TAN model grows exponentially with respect to the
number of discrete values each feature takes. To solve this
problem we propose a hybrid TAN and Gaussian classifier.
We first discretize the features and use the TAN model learn-
ing algorithm to learn the dependency structure among the
features. Then, we revert back to the original continuous
features and model them as Gaussian, using the TAN graph
structure. The added complexity of the Gaussian model is
only linear in the number of features, but we are still able to
capture dependencies among the features.

The full joint distribution of the Gaussian-TAN model
can be written as:

	 ��� # 
 � # 
 � # 3 3 3 # 
 	 ��� 	$��� � 	�� � � 	 �!
 � � 	 
 � � # � � # (11)

where 	 
 � � is the feature that is the additional parent of fea-
ture 
 � . 	 
 � � is empty for the root feature in the directed
tree graph of step 4 in the procedure above.

Using the Gaussian assumption, the pdf’s of the distribu-
tion in the product above are:	 � � � ��
 � � 	 
 � � # � ��� ���  � ��� � � � 
�� 	 
 � � #�� �� � ����� ��� � � � #

(12)
where  � �	� #�� � � refers to the Gaussian distribution with
mean and variance given that the class is � , � � � #�� �� � are the

mean and variance of the feature 
 � , � � ��

� ��� �
-
�����

� �
���
�
����� �

� is

the correlation coefficient between 
 � and 	 
 � � , and 
 ���
�� ��� �
-
�����

� �
������ �

� .

Estimating the Gaussian-TAN model involves estimating
all the class conditional means and variances for each fea-
ture as in the NB model, then estimate the class conditional
covariances between features and their feature parents. In
terms of model complexity, there are � � � ��� � � � � extra pa-
rameters to estimate (the covariances).

Figure 4 shows the learned tree structure of the features
learned using a database of subjects displaying different fa-
cial expressions. The arrows are from parents to children
features. From the tree structure we see that the bottom half
of the face is almost disjoint from the top portion, except for
a weak link between AU 4 and AU 11.

7 The Temporal Approach: Facial Expres-
sion Recognition Using Multi-level HMMs

In this section we suggest another approach for recogniz-
ing the emotion through facial expression displayed in live
video. In contrast to the methods described in the previous
sections, this method uses temporal information displayed
in the video also to discriminate different expressions. The

1 
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Figure 4. The learned TAN structure for the facial fea-
tures. Dashed lines represent links that are relatively
weaker than the others.

logic behind using all of the temporal information is that any
emotion being displayed has a unique temporal pattern.

The method we propose automatically segments the
video to the different facial expression sequences, using an
multi-level HMM structure. The first level of the archi-
tecture is comprised of independent HMMs related to the
different emotions. This level of HMMs is very similar to
the one used in [31] and [27] who use the likelihood of a
given sequence in a ML classifier to classify a given video
sequence. Instead of classifying using the output of each
HMM, we use the state sequence of the HMMs as the in-
put of the higher level Markov model. This is meant to
segment the video sequence. Moreover, this also increases
the discrimination between the classes since it tries to find
not only the probability of each the sequence displaying one
emotion, but the probability of the sequence displaying one
emotion and not displaying all the other emotions at the
same time.

7.1 Hidden Markov Models

Hidden Markov models have been widely used for many
classification and modeling problems. Perhaps the most
common application of HMM is in speech recognition. One
of the main advantages of HMMs is their ability to model
nonstationary signals or events. Dynamic programming
methods allow one to align the signals so as to account for
the non stationarity. However, the main disadvantage of this
approach is that it is very time-consuming since all of the
stored sequences are used to find the best match. The HMM
finds an implicit time warping in a probabilistic paramet-
ric fashion. It uses the transition probabilities between the
hidden states and learns the conditional probabilities of the
observations given the state of the model. In the case of
emotion expression, the signal is the measurements of the
facial motion. This signal is non stationary in nature, since
an expression can be displayed at varying rates, with vary-
ing intensities even for the same individual.

7
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An HMM is given by the following set of parameters:

� � ��� # � # � �
 � * � � ������� � �	� * � ��� �	�
� � # ��


�
# ��
  � � � � * � � � � � ��� � � � � � � �
� * �4# ��
 ��
  � * � � ��� � �
� * �

where � is the state transition probability matrix,

�
is the

observation probability distribution, and � is the initial state
distribution. The number of states of the HMM is given
by  . It should be noted that the observations ( � � ) can be
either discrete or continuous, and can be vectors. In the dis-
crete case,

�
becomes a matrix of probability entries (Con-

ditional Probability Table), and in the continuous case,

�
will be given by the parameters of the probability distribu-
tion function of the observations (normally chosen to be the
Gaussian distribution or a mixture of Gaussians). Given an
HMM there are three basic problems that are of interest. The
first is how to efficiently compute the probability of the ob-
servations given the model. This problem is related to clas-
sification in the sense that it gives a measure of how well a
certain model describes an observation sequence. The sec-
ond is how to find the corresponding state sequence in some
optimal way, given a set of observations and the model. This
will become an important part of the algorithm to recognize
the expressions from live input and will be described later
in this paper. The third is how to learn the parameters of the
model

�
given the set of observations so as to maximize the

probability of observations given the model. This problem
relates to the learning phase of the HMMs which describe
each facial expression sequence. A comprehensive tutorial
on HMMs is given by Rabiner [33].

7.2 Expression Recognition Using Emotion-
Specific HMMs

Since the display of a certain facial expression in video
is represented by a temporal sequence of facial motions it
is natural to model each expression using an HMM trained
for that particular type of expression. There will be six
such HMMs, one for each expression: � happy(1), angry(2),
surprise(3), disgust(4), fear(5), sad(6) � . There are several
choices of model structure that can be used. The two main
models are the left-to-right model and the ergodic model.
In the left-to-right model, the probability of going back to
the previous state is set to zero, and therefore the model will
always start from a certain state and end up in an ‘exiting’
state. In the ergodic model every state can be reached from
any other state in a finite number of time steps. In [31], Ot-
suka and Ohya used left-to-right models with three states
to model each type of facial expression. The advantage
of using this model lies in the fact that it seems natural to
model a sequential event with a model that also starts from
a fixed starting state and always reaches an end state. It also

involves fewer parameters and therefore is easier to train.
However, it reduces the degrees of freedom the model has to
try to account for the observation sequence. There has been
no study to indicate that the facial expression sequence is in-
deed modeled well by the left-to-right model. On the other
hand, using the ergodic HMM allows more freedom for the
model to account for the observation sequences, and in fact,
for an infinite amount of training data it can be shown that
the ergodic model will reduce to the left-to-right model, if
that is indeed the true model. In this work both types of
models were tested with various numbers of states in an at-
tempt to study the best structure that can model facial ex-
pressions.

The observation vector � � for the HMM represents con-
tinuous motion of the facial action units. Therefore,

�
is

represented by the probability density functions (pdf) of the
observation vector at time � given the state of the model. The
Gaussian distribution is chosen to represent these pdf’s, i.e.,� � � � � � � � � � �  �	� * #  * � # ��
 ��
  (13)

where � * and  * are the mean vector and full covariance
matrix, respectively.

The parameters of the model of emotion-expression spe-
cific HMM are learned using the well-known Baum-Welch
reestimation formulas. See [26] for details of the algorithm.
For learning, hand labeled sequences of each of the facial
expressions are used as ground truth sequences, and the
Baum algorithm is used to derive the maximum likelihood
(ML) estimation of the model parameters (

�
).

Parameter learning is followed by the construction of a
ML classifier. Given an observation sequence � � , where
� � ����# � � , the probability of the observation given each
of the six models � � � � � � * � is computed using the forward-
backward procedure [33]. The sequence is classified as the
emotion corresponding to the model that yielded the highest
probability, i.e.,

��� ��
 ��� � 
�
 ��� � ��� � � � � � � � � � (14)

7.3 Automatic Segmentation and Recognition of
Emotions Using Multi-level HMM.

The main problem with the approach taken in the previ-
ous section is that it works on isolated facial expression se-
quences or on pre-segmented sequences of the expressions
from the video. In reality, this segmentation is not avail-
able, and therefore there is a need to find an automatic way
of segmenting the sequences. Concatenation of the HMMs
representing phonemes in conjunction with the use of gram-
mar has been used in many systems for continuous speech
recognition. Dynamic programming for continuous speech
has also been proposed in different researches. It is not very
straightforward to try and apply these methods to the emo-
tion recognition problem since there is no clear notion of

8
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language in displaying emotions. Otsuka and Ohya [31]
used a heuristic method based on changes in the motion of
several regions of the face to decide that an expression se-
quence is beginning and ending. After detecting the bound-
aries, the sequence is classified to one of the emotions using
the emotion-specific HMM. This method is prone to errors
because of the sensitivity of the classifier to the segmenta-
tion result. Although the result of the HMMs are indepen-
dent of each other, if we assume that they model realistically
the motion of the facial features related to each emotion, the
combination of the state sequence of the six HMMs together
can provide very useful information and enhance the dis-
crimination between the different classes. Since we will use
a left-to-right model (with return), the changing of the state
sequence can have a physical attribute attached to it (such
as opening and closing of mouth when smiling), and there-
fore there we can gain useful information from looking at
the state sequence and using it to discriminate between the
emotions at each point in time.

To solve the segmentation problem and enhance the dis-
crimination between the classes, a different kind of architec-
ture is needed. Figure 5 shows the proposed architecture for
automatic segmentation and recognition of the displayed ex-
pression at each time instance. The motion features are con-
tinuously used as input to the six emotion-specific HMMs.
The state sequence of each of the HMMs is decoded and
used as the observation vector for the high level Markov
model. The high-level Markov model consists of seven
states, one for each of the six emotions and one for neu-
tral. The neutral state is necessary as for the large portion
of time, there is no display of emotion on a person’s face. In
this implementation of the system, the transitions between
emotions are imposed to pass through the neutral state since
our training data consists of facial expression sequences that
always go through the The neutral state. In unconstraint sit-
uation, it is possible (although less likely) for a person to
go from one expression to another without passing through
a neutral expression. In this case, the higher level Markov
model will have non-zero transition probabilities of passing
from all states to all states (which appear as arcs between the
different states). The recognition of the expression is done
by decoding the state that the high-level Markov model is in
at each point in time since the state represents the displayed
emotion.

The training procedure of the system is as follows:� Train the emotion-specific HMMs using a hand seg-
mented sequence as described in the previous section.� Feed all six HMMs with the continuous (labeled) facial
expression sequence. Each expression sequence con-
tains several instances of each facial expression with
neutral instances separating the emotions.� Obtain the state sequence of each HMM to form the

six-dimensional observation vector of the higher-level
Markov model, i.e., � �� � � � � � �� ,..., � � �

�
�
���

, where � �
� �
�

is the state of the

�
� �

emotion-specific HMM. The de-
coding of the state sequence is done using the Vitterbi
algorithm [33].� Learn the probability observation matrix for each state
of the high-level Markov model using � ��� �

� �* � � + � �� expected frequency of model

�
being in state � given

that the true state was
� � , and�

� � � � � � + � � �� � � �
� ��� � � ��� ��� �

� �* � � + ��� (15)

where � � ����# Number of States for Lower Level
HMM).� Compute the transition probability � � � 
 + 0 � of the
high-level HMM using the frequency of transiting from
each of the six emotion classes to the neutral state in
the training sequences and from the neutral state to the
other emotion states. For notation, the neutral state is
numbered � and the other states are numbered as in the
previous section. All the transition probabilities could
also be set using expert knowledge, and not necessarily
from training data.� Set the initial probability of the high level Markov
model to be 1 for the neutral state and 0 for all other
states. This forces the model to always start at the neu-
tral state and assumes that a person will display a neu-
tral expression in the beginning of any video sequence.
This assumption is made just for simplicity of the test-
ing.

The steps followed during the testing phase are very sim-
ilar to the ones followed during training. The face tracking
sequence is used as input into the lower-level HMMs and a
decoded state sequence is obtained using the Vitterbi algo-
rithm. The decoded lower-level state sequence � �� is used
as input to the higher-level HMM and the observation prob-
abilities are computed using Equation (15). Note that in this
way of computing the probability, it is assumed that the state
sequences of the lower-level HMMs are independent given
the true labeling of the sequence. This assumption is rea-
sonable since the HMMs are trained independently and on
different training sequences. In addition, without this as-
sumption, the size of

�
will be enormous, since it will have

to account for all possible combinations of states of the six
lower-level HMMs, and it would require a huge amount of
training data.

Using the Vitterbi algorithm again for the high level
Markov model, a most likely state sequence is produced.
The state that the HMM was in at time � corresponds to the
expressed emotion in the video sequence at time � . To make
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Figure 5. Multilevel HMM architecture for automatic segmentation and recognition of emotion.

the classification result robust to undesired fast changes, a
smoothing of the state sequence is done by preserving the
actual classification result if the HMM did not stay in a par-
ticular state for more than � times, where � can vary be-
tween 1 and 15 samples (assuming a 30-Hz sampling rate).
The introduction of the smoothing factor � will cause a de-
lay in the decision of the system, but of no more than �
sample times.

8 Experiments

In order to test the algorithms described in the previous
sections, we collected data of people that are instructed to
display facial expressions corresponding to the six types of
emotions. The data collection method is described in detail
in [4]. All the tests of the algorithms are performed on a set
of five people, each one displaying six sequences of each
one of the six emotions, and always coming back to a neu-
tral state between each emotion sequence. The video was
used as the input to the face tracking algorithm described in
Section 3. The sampling rate was 30 Hz, and a typical emo-
tion sequence is about 70 samples long ( � 2 s). Figure 6
shows one frame of each emotion for three subjects.

The data was collected in an open recording scenario,
where the person was asked to display the expression cor-
responding to the emotion being induced. This is of course
not the ideal way of collecting emotion data. The ideal way
would be using a hidden recording, inducing the emotion
through events in the normal environment of the subject, not

in a studio. The main problem with collecting the data this
way is the impracticality of it and the ethical issue of hidden
recording.

We used the database described above to test our algo-
rithms. We performed two types of experiments. First we
performed person dependent experiments, in which part of
the data for each subject was used as training data, and an-
other part as test data. Second, we performed person inde-
pendent experiments, in which we used the data of all but
one person as training data, and tested on the person that
was left out.

For the SNoW and SNoW-NB classifiers we report the
results obtained after discretizing the features to 100 bins
using uniform discretization. Results using other parame-
ters are reported in [4]. For the TAN classifiers we used
the dependencies shown in Figure 4, learned using the al-
gorithm described in Section 6. For the HMM-based mod-
els, several states were tried (3-12) and both the ergodic and
left-to-right with return were tested. The results presented
below are of the best configuration (an ergodic model using
11 states).

8.1 Person-Dependent Tests

A person-dependent test is first tried. For the frame based
methods (SNoW, SNoW-NB, NB-Gaussian, NB-Cauchy,
and TAN), we measure the accuracy with respect to the clas-
sification result of each frame. The accuracy for the tempo-
ral based methods is measured with respect to the misclas-
sification rate of an expression sequence, not with respect to
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(a) Anger (b) Disgust (c) Fear (d) Happiness (e) Sadness (f) Surprise

Figure 6. Examples of images from the video sequences used in the experiment.

each frame. Tables 2 and 3 show the recognition rate of each
subject and the average recognition rate of the classifiers.

It can be seen that the discrete SNoW-NB outperforms all
of the classifiers. It is also worth noting that the results for
subject 5 are consistently worse for all classifiers. The fact
that subject 5 was poorly classified can be attributed to the
inaccurate tracking result and lack of sufficient variability in
displaying the emotions. It can also be seen that the multi-
level HMM achieves similar recognition rate (and improves
it in some cases) compared to the emotion-specific HMM,
even though the input is unsegmented continuous video.

The NB-Cauchy assumption does not give a significant
improvement in recognition rate comparing with the NB-
Gaussian assumption mainly due to the fact that in this case
there are not many outliers in the data (each person was dis-
playing the emotion sequences in the same environment).
This may not be the case in a natural setting experiment.
It is also important to observe that taking into account the
dependencies in the features (the TAN model) gives signifi-
cantly improved results.

In average the best results are obtained by using the
SNoW-NB classifier, followed by the TAN, NB-Cauchy,
NB-Gaussian, and SNoW classifiers.

The confusion matrices for the NB-Cauchy and the TAN
classifiers are presented in Table 4 and Table 5. The anal-
ysis of the confusion between different emotions shows
that Happy and Surprise are well recognized. The other
more subtle emotions are confused with each other more
frequently, with Sad being the most confused emotion.
The confusion matrices for the HMM based classifiers (de-
scribed in details in [6]) show similar results, with hap-
piness achieving near 100%, and surprise approximately
90%. These observations suggest that we can see the fa-
cial expression recognition problem from a slightly differ-
ent perspective. Suppose that now we only want to detect
whether the person is in a good mood, bad mood, or is just
surprised (this is separated since it can belong to both pos-

itive and negative facial expressions). This means that we
consider now only 4 classes in the classification: Neutral,
Positive, Negative, and Surprise. Anger, Disgust, Fear, and
Sad will count for the Negative class while Happy will count
for the Positive class.

The confusion matrix obtained in this case for the NB-
Cauchy classifier is presented in Table 6. The system can
tell now with 88-89% accuracy if a person displays a nega-
tive or a positive facial expression.

8.2 Person-Independent Tests

In the previous section it was seen that a good recognition
rate was achieved when the training sequences were taken
from the same subject as the test sequences. A more chal-
lenging application is to create a system which is person-
independent. In this case the variation of the data is more
significant and we expect that using a Cauchy-based classi-
fier we will obtain significantly better results.

For this test all of the sequences of one subject are used as
the test sequences and the sequences of the remaining four
subjects are used as training sequences. This test is repeated
five times, each time leaving a different person out (leave
one out cross validation). Table 7 shows the recognition
rate of the test for all classifiers. In this case the recognition
rates are lower compared with the person-dependent results.
This means that the confusions between subjects are larger
than those within the same subject.

In this case the TAN classifier provides the best results.
It is important to observe that the Cauchy assumption also
yields an improvement compared to the other classifiers, due
to the capability of the Cauchy distribution to handle out-
liers. One of the reasons for the misclassifications is the fact
that the subjects are very different from each other (three fe-
males, two males, and different ethnic backgrounds); hence,
they display their emotion differently. Although it appears
to contradict the universality of the facial expressions as
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studied by Ekman and Friesen [12], the results show that
for practical automatic emotion recognition, consideration
of gender and race play a role in the training of the system.

Table 8 and Table 9 show the confusion matrices for the
NB-Cauchy and the TAN classifiers. Again we see that sur-
prise and happy are detected with high accuracy, and other
expressions are greatly confused.

If we now consider the problem where only the person
mood is important, the classification rates are significantly
higher. The confusion matrix obtained for the NB-Cauchy
classifier is presented in Table 10.

Now the recognition rates are much higher. The system
can tell now with about 80% accuracy if a person displays a
negative or a positive facial expression.

9 Discussion

In this work we presented several methods for expression
recognition from video.

We showed frame by frame based classifiers, the SNoW
classifer, several Naive Bayes classifiers, different by the
distribution assumptions on the features, and a TAN clas-
sifier that takes into account the dependencies between the
features. For continuous features we successfully used the
Cauchy distribution assumption and provided an algorithm
to test whether the Cauchy assumption is better than the
Gaussian assumption. We performed person-dependent and
person-independent experiments and we showed that the
Cauchy distribution assumption provides better results than
the Gaussian distribution assumption. We also showed that
incorporating the dependencies between the features pro-
vides significantly improved results. Moreover, we showed
that when the facial expression recognition problem is re-
duced to a mood recognition problem the classification re-
sults are significantly higher.

We introduced the multi-level HMM architecture and
compared it to the straight forward Emotion-specific HMM.
We showed that comparable results can be achieved with
this architecture, although it does not rely on any pre-
segmentation of the video stream.

One of the main drawbacks in all of the works done on
emotion recognition from facial expression videos is the
lack of a benchmark database to test different algorithms.
This work relied on a database collected by Chen [4], but
it is difficult to compare the results to other works using
different databases. The recently constructed database by
Kanade et al [23] will be a useful tool for testing these algo-
rithms.

Are the recognition rates sufficient for real world use?
We think that it depends upon the particular application. In
the case of image and video retrieval from large databases,
the current recognition rates could aid in finding the right
image or video by giving additional options for the queries.
For future research, the integration of multiple modalities

such as voice analysis and context would be expected to im-
prove the recognition rates and eventually improve the com-
puter’s understanding of human emotional states. Voice and
gestures are widely believed to play an important role as
well [4, 8], and physiological states such as heart beat and
skin conductivity are being suggested [2]. People also use
context as an indicator of the emotional state of a person.
This work is just another step on the way toward achieving
the goal of building more effective computers that can serve
us better.
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AU Description

1 vertical movement of the center of upper lip
2 vertical movement of the center of lower lip
3 horizontal movement of left mouth corner
4 vertical movement of left mouth corner
5 horizontal movement of right mouth corner
6 vertical movement of right mouth corner
7 vertical movement of right brow
8 vertical movement of left brow
9 lifting of right cheek

10 lifting of left cheek
11 blinking of right eye
12 blinking of left eye

Table 1. Action units used in our face tracker.

Subject SNoW SNoW-NB NB-Gaussian NB-Cauchy TAN

1 83.43% 88.15% 80.97% 81.69% 85.94%
2 77.11% 85.98% 87.09% 84.54% 89.39%
3 82.76% 87.96% 82.5% 83.05% 86.58%
4 76.63% 87.91% 77.18% 79.25% 82.84%
5 71.74% 82.29% 69.06% 71.74% 71.78%

Average 78.53% 86.45% 79.36% 80.05% 83.31%

Table 2. Person-dependent facial expression recognition accuracies using frame based methods.

Subject Single HMM Multilevel HMM

1 82.86% 80%
2 91.43% 85.71%
3 80.56% 80.56%
4 83.33% 88.89%
5 54.29% 77.14%

Average 78.49% 82.46%

Table 3. Person-dependent facial expression recognition rates using the emotion-specific HMM and multilevel HMM.
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Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral ����� ��� 0.48 5.04 3.11 6.19 6.44 4.18
Happy 2.77 ���	��

� 0.83 1.87 1.06 2.19 4.08
Anger 11.3 2.27 ����� ��
 6.03 2.48 2.05 1.02

Disgust 0.92 0 2.73 ����� ��� 2.66 4.03 3.23
Fear 5.51 0 2.96 8.36 ���	� ��� 2.43 3.61
Sad 13.59 0.19 2.18 5.61 2.10 ����� ��� 1.84

Surprise 4.39 0 0 0.47 5.14 2.92 ���	� ���

Table 4. Person-dependent confusion matrix using the NB-Cauchy classifier

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral ����� ��� 1.21 3.88 2.71 3.68 5.61 3.29
Happy 1.06 ���	� ��� 0.71 3.99 2.21 1.71 2.74
Anger 5.18 0 ����� ��� 4.14 3.27 1.17 0.30

Disgust 2.48 0.19 1.50 ����� ��� 3.68 7.13 1.77
Fear 4.66 0 4.21 2.28 ����� ��� 2.13 3.00
Sad 13.61 0.23 1.85 2.61 0.70 ����� ��� 0

Surprise 5.17 0.80 0.52 2.45 7.73 1.08 ���	� ���

Table 5. Person-dependent confusion matrix using the TAN classifier

Emotion Neutral Positive Negative Surprise
Neutral ����� ��� 0.48 20.89 4.18
Positive 2.77 ������
�� 4.97 4.08
Negative 7.83 0.61 ������
�
 2.43
Surprise 5.39 0 8.54 ����� ���

Table 6. Person-dependent average confusion matrix using the Cauchy assumption

SNoW SNow-NB NB-Gaussian NB-Cauchy TAN Single HMM Multilevel HMM
Recognition rate 57.69% 61.31% 58.94% 63.58% 65.11% 55% 58%

Table 7. Recognition rate for person-independent test.

Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral �	
�� ��� 0.64 3.75 4.06 8.29 10.62 1.31
Happy 5.45 �	
���

� 1.41 8.13 0.15 2.27 1.40
Anger 11.19 2.64 ����� ��� 14.87 0.86 11.14 0

Disgust 5.67 9.94 2.73 ���	� � 6.48 8.88 6.03
Fear 8.99 0 2.34 1.36 ����� ��� 2.40 9.35
Sad 10.00 10.39 5.14 8.25 17.37 ����� ��
 9.41

Surprise 10.81 8.79 0.98 2.35 4.49 4.40 ������
��

Table 8. Person-independent average confusion matrix using the NB-Cauchy classifier
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Emotion Neutral Happy Anger Disgust Fear Sad Surprise
Neutral ����� ��� 0.46 3.39 3.78 7.35 6.53 1.50
Happy 3.21 ���	� ��� 2.77 9.94 0 2.75 3.97
Anger 14.33 0.89 ����� ��� 10.60 1.51 9.51 0.14

Disgust 6.63 8.99 7.44 ���	� ��� 2.20 10.90 11.32
Fear 10.06 0 3.53 0.52 ����� ��� 3.41 8.77
Sad 13.98 7.93 5.47 10.66 13.98 ��
�� ��� 6.69

Surprise 4.97 6.83 0.32 7.41 3.95 5.38 ��
���
�


Table 9. Person-independent average confusion matrix using the TAN classifier

Emotion Neutral Positive Negative Surprise
Neutral �	
�� ��� 0.64 26.73 1.31
Positive 5.45 ��
���
�� 11.97 1.40
Negative 8.96 5.74 ����� ��� 6.2
Surprise 10.81 4.4 12.23 ������
��

Table 10. Person-independent average confusion matrix using the NB-Cauchy classifier.
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